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E-2765

A NEW APPROACH TO THE DESIGN OF TIME-VARYING CONTROL

SYSTEMS WITH APPLICATION TO THE SPACE SHUTTLE BOOST

Abstract

An investigation is made of a general approach toward the analysis and de-

sign of closed loop control for slowly time-varying linear systems. The approach

is by the method of generalized multiple scales, in which slow and fast dynamics

are systematically separated by employing different "clocks" which measure time

at varying rates. The clocks, which are necessarily nonlinear functions of time,

are ciYo'e-ppropriately such that the system dynamics are asymptotically invar-

iant with respect to the new time scale. A transfer function relating the output to

the input for general linear slowly time-varying systems is developed and represents

the actual system under certain conditions. The clock functions is shown to satisfy

an algebraic characteristic equation and can be determined in general in terms of

the coefficienits.The time-invariant case arises as a natural limit and a special

case of our general approach. Control system design is carried out with respect

to the transformed, approximate system representation using standard synthesis

techniques. Transformation back to real time results in time-varying control. We

have thus provided a useful framework for further analysis of properties such as

stability, parameter sensitivity and response of time-varying control systems. The

approach can be viewed as an extension of time-invariant linear feedback control

theory. Our approach is valid continuously through the time variation and is a sub-

stantial improvement over the "frozen" approximation (a special case of our approach),

which is limited to very short time intervals. The method is applied to the control

design of the space shuttle during the initial boost phase. A preliminary design of
~ K A A -~

the contril- ipresented both for the second order approximation and the third order

representation of the shuttle dynamics. For the latter, conditions for minimum lat-

eral drift are determined from the multiple scales formalism. Feedback gains are

determined for minimum drift for two cases including feedback of angle of attack,

pitch and pitch rate.

by

R.V. Ramnath

May 1973
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1. Introduction

Analysis of the dynamics of linear time-varying (t-v) systems has been the

object of considerable study and research. However, the problem is not easy and

motivates attempts to develop new methods of analysis. Further, the problem of

controlling t-v systems is intimately related to our ability to predict, at least qual-

itatively, the dynamic evolution of general t-v systems. A natural extension of

such an understanding is the development of synthesis and design techniques for t-v

systems. It has been shown that the method of generalized multiple scales 1 ' 2 en-

ables us to develop an analytical description of the response of a general class of

t-v systems. In this paper an investigation is made of developing analysis and con-

trol system sy'n'~imqu_ esT or feedback control of t-v systems by using the

concept of generalized multiple scales. By this means, rapid and slow motions of
s ,, K , a A A A

the system dynamics are systematically separated, leading to an asymptotic des-

cription of the dynamics of general, slowly time-varying systems. We are, there-

fore, able to analyze the closed loop dynamics of t-vsystems by an extension of

classical techniques of analysis of constant linear control systems. This approach
Jk -N X-~ L- j t , -,- ,, K _ ~ _ _ - f- , We~ - _

is then applied to the analysis and control of the space shuttle vehicle from launch
A k- '; A - Ifi AS K J- !C AS Y -~ A _t __ is I-d

through the initial boost phase (up to staging).

Thp origin of the method of multiple scales can be traced to the works of
_ , Jo J\ - iJ >+

Krylov, Bogoliubov and Mitropolsky who allowed the constants arising in direct
A % A~ . K a A- -d -A--ff- ~a -A . -A) -+ I~- -i '+ =

perturbatilot&heory to be slowly varying functions. The method in its early form

was developed in the context of irreversible processes in statistical mechanics by

Frieman and Sandri and of some nonlinear differential equations by Cole and Kev-

orkian5 . These applications considered linear scales-ie the time scales were

linear functions of the original independent variable. The method was generalized

by Ramnath 1 ' 2 and Sandri2 to include general scales which could be nonlinear

functions as well as complex quantities.

2. The Method of Multiple Scales

We will now briefly discuss the concept of multiple scales and its application

to the analysis of t-v systems in general. The discussion is of necessity brief here

and proceeds from a control engineer's point of view. For a more complete pre-

sentation of the technique the reader is referred to references 1 and 2.

We will now consider the possibility of reducing linear time-varying (t-v)

systems to time-invariant systems. Such an exact conversion in the general case

is impossible inasmuch as it is tantamount to solving t-v equations exactly in terms
7-I-

of elementary transcendental functions, which is known to be impossible . An im-

portant aspect of constant linear systems is that exact solutions can be expressed

in terms of exponentials of arguments which are linear in the independent variable.

1



The solution of time-varying systems involve higher transcendental functions such

as hypergeometric functions and Mathieu functions which cannot be represented in

terms of exponentials. Nonetheless, we seek to develop approximate solutions to

t-v systems in terms of elementary transcendental functions. The best approach

to approximations is by means of asymptotic theory. For purposes of engineering

analysis the difference between asymptotic approximations and mathematically ex-

act solutions is only academic.

The method of multiple scales is particularly useful when a phenomenon

exhibits a mixture of fast and slow motions. These are separated in a systematic

manner by employing a number of independent observers who perform readings

using clocks which count time at different rates, changing continuously with respect

to real time. Mathematically time, t, is extended into space of larger dimension,

ie into a vector, r; with components ri' i = 1, ... n depending on t. More generally,

Ti (2.1)=i .i (t, e) (2.1)

where E is a small, positive parameter, being a measure of the separation of the

slow and fast motions. Let the system dynamics be described by a class of single-

valued mappings {f} with domain 6 and range p. The nature of the mappings, do-

main and range are assumed to be known. Thus

P: (2.2)

The domain 6 is embedded in a set 6 of higher dimension, or dim 6 - 6. Now 6 is

called an extension of the domain. The single-valued mapping associated with the

extension of 6 is denoted by E 5 . Now _, the extension of 0, is defined as a single-

valued mapping of 6 into p with p D p, if and only if

0 E 5 = q (2.3)

where _ E, denotes the composition of two mappings E 5 and 0. This is shown in

Fig. la.

An accurate representation of extension is given by the commutative sequence

(Fig. lb). More specifically, let us consider the dynamics of a time-varying system

to be described by an equation

X{y (t, e), x(t, e) t, e} = 0 (2.4)

where X is a linear operator, y is the system response x is the input and e is a small

parameter. We extend

t -(T }(2.5)

2



where ' is a vector of n dimensions. In general .i 
= Si (t, e), i = 1, 2, ... n. Now

y (t, e) - y (, E) (2.6)

In general we could make an asymptotic expansion of y in powers of e. For our

present purposes we will consider only y(T). We choose Ti (t, e) such that the

functional dependence of y on T1 becomes particularly simple. Thus we arrive at

the natural variables to describe the solution. After a suitable choice of 'r. we will
1

restrict the extended solution y (') along the "trajectories" i('r, e) to obtain the

solutions in real time, t. We must note that in order to represent linear t-v sys-

tems in terms of constant linear systems, it is essential to distort the independent

variable, t, in a nonlinear fashion.

3. Application to Time-Varying Systems

We will now develop an analytical description of a general class of linear time-

varying systems by using the above concepts. The general theory has been pre-

sented in Ref. 1, 2 and we will only consider the problem from the standpoint of

control. We will develop the theory for general linear t-v systems of the nth order.

Specialization to systems of low order is straight forward. We will consider system

description in the scalar form although the analysis can be extended to the vector

form as well.

th
Consider an nth order linear time-varying system described by;

n m

w cy(i) = K I a. x(j) (3.1)

i=O j=O

where: m - n; wio ai are slowly varying functions of time, K is a constant,

1M

y(i) (t) di y
dt 1

and

x( j ) (t) d j x
dt J

The coefficients cw. can therefore be considered to be dependent on the variable t = t

where 0 < E << 1. Equation (3,1) can be reparameterized and written in the form

n m

Z) i t)y(i) (t) = K e a.(t) x() (t) (3.2)

i=O j=O

3



In order to develop an analytical asymptotic approximation to the system

response, we extend the variables as follows.

{ }~ (a)

and

y (t, e) - y (') (b) (3.3)

x () - x () (c)

specifically we consider the time vector T to be of two dimensions with components

To and 1. We choose

To 
= t, 1 = Jk(et) dt (3.4)

where k(t) is a "clock" function, as yet undetermined. The system differential

equation, in the leading order in e, is written as: 1 ' 2

n . m

a(3 5)ri o) ak K K a . (To) kJ a X (3
i:r0 a-'lii=O j=0 1

y y (Y

On Laplacetransformation with respect to 1 and rearranging, the above

equation can be written as:

x-Y= G (, To) (3.6)x 0

where

m

K Z AJ

G (, T o ) 
=  ni=O (3.7)0 n

I Wi

i=O0

and e = sk; s is the Laplace variable. We now have the input-output relation as a

transfer function G with poles and zeros moving slowly. The variable 6, which is

not restricted to be real, defines the Laplace-clock space in which the system dif-

ferential equation can be asymptotically represented by an algebraic expression.

The singularities of this expression are significant in developing a solution in real

time t. Their importance is manifest in inverse Laplace transforming to the time

domain, which is done in conjunction with the restriction of the extended solutions.

4



Given ~ (To), and the poles of G (, ro ) the fundamental solutions of (3. 5) are given by:

n

y= C i ( 0 ) exp (li (3.8)
i--1

Upon restriction the solution is written as:

n

y (t, e) = C i (t) exp (fi (t) dt) (3.9)

i=-1

where C. are coefficients suitably determined in a partial fraction expansion of G.
1

We must note that (3.9) represents the dominant part of the exact solution.

Accuracy of the solution can be improved by considering slower variations (ie in T-
)

as well. To leading order C i are considered to be constants.

The advantage of the above approach is that we are able to analyze a general

class of linear time-varying systems by an extension of classical theory. We have

developed a transfer function of a t-v system leading to suitable block diagram rep-

resentation, root locus analysis for the closed loop, design of compensation net-

works and so on. In the present analysis the poles are assumed to be distinct.

4. Application to the Boost Phase of the Space Shuttle

In this section we will discuss an approach towards application of the above

theory to the preliminary design of the control system for the space shuttle vehicle

from launch during the initial boost phase. The system parameters such as mass,

inertia, velocity vary continuously through boost and the dynamics are, therefore,

time-varying. Techniques of linear, constant-coefficient systems analysis are not

applicable. Because of this fundamental difficulty, previous approaches have de-

signed control systems by approximating the t-v dyanmics by linear constant sys-

tems on the basis of "freezing" the system at a number of instants of time.

The validity and usefulness of such an approach is very limited and could lead to

erroneous conclusions in regard to system stability. The system must be frozen

at a large number of time instants and at best, this approach has a very short range
, ~

of validity. There is, therefore, a need for a better and more accurate represent-

ation of the system dynamics. The multiple scales theory offers precisely such an

approach. By means of this theory we are able to accurately represent the system

dynamics uniformly through the time variation, in terms of simply calculable func-

tions. It eliminatesthe need for several control system analyses (each at a differ-

ent instant of time) by the frozen method.

5



We consider motions of the shuttle vehicle about a launch trajectory. The

system is represented by a simple mathematical model mainly to illustrate analysis

and design by the new technique. The vehicle is considered to be a rigid body and

fuel sloshing is neglected. With the usual notation, the motion of the vehicle is

described by 6

flT T D) 1 Lc T
= - m +g cos 000 - -- a + 6 (a)m m m

"aa + / c 6 (b)

(4.1)

z
a = 0 + + (c)

where ,4c =La 2a/I and /c = T c c/I (d)

The coefficients of these differential equations vary slowly during the boost

phase in a manner that depends on the actual trajectory. The variations of the co-

efficients for a specific trajectory are given in Table I. In accordance with the

multiple scales theory in §3, the dynamics of (4.1)aredominantlydescribed by:

2 (T - D)/m +g cos 0o L /m z T /m 6 O w
T 0 a c

O g 2 Ma 0 MP + 0 (4. 2)

-C/V -1 1 0 1

or in vector form

AX = C6 + Waw (4.3)

where the terms in the vector-matrix equation (4.3) are defined by comparison to

(4.2) and ~ is the Laplace-clock variable (9 = sk). As the coefficients vary only

on the slow scale To, (4.1) can be studied as a constant coefficient system (4.2)

with respect to r1 , the fast scale. The response of (4.1) to a control input 6 or a

wind input aw is described fundamentally by the set (4.2) through the nonlinear clock

k(-o). For any choice of k(r o ) we have a scale 1 and a solution x(r 1 ). However, the

optimal choice of k(t) is that which renders T and I independent, which is the im-

plicit rationale in the multiple scales approach. This criterion leads to the optimal

choice of the clock function k(t) to be given by the eigenvalues of A. The solution is

then expressible in the asymptotic form,

6



Values of Parameters

The following functional forms for the parameters of the shuttle 049 vehicle

after consulting Ref. (7) have been used.

Q (t) = -(5.17 + 0.0417t) ft

c(t) = (77.08 + 0.0417t) ft

(t)= (323 - 1.55t) 106 slug ft 2

Iy~

m(t) = 1.712 x 105 - 815t slugs

S = SREF = 3420 ft2

g = 32.2

0 = 0.382 radian = 2.398 deg
0

CL = 3.21 lbs/radian

CD = 0.2 lb/radian

4
T * = 47 x 10 lbs

C

T c =- Effective control thrust for pitch control

= (2 + 32-55-- T* = 5.92 x 105 lbs

q(t) = t 2 exp [-1.7235804 + 9.7594075 x 10 - 3 t - 2.7600722 x 10 - 4 t2 ]

V(t) = (5.4621582 + 0.1789339t) t

TT = TTOTAL (893 - 1.428t) 104 lb

D= DRAG = 684 q lbs

L(t) = CL S q = 10980 q lb/radian
aL

=A a t aL /Iy; PC(t) = ctc /Iy

7
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x (t) Xs (o70)X ( 1 )

where x (r 1 ) is the fast (or dominant) part and xs (ro) is the slow part and To, '1
are as defined in (3.4). The response of 0 to an input 6 is described by the "transfer

function"

(4.5)
0 - + La1 + - c

6 3 + La 2 -+ g c os 0 )(/V)
mV a Mam I~ a

The open loop dynamics are altered by feedback as follows. Let the control law be

6 = -KA [K 0 0 +KR 0 +Ka ] (4.6)

The equations of motion can now be written as:

2 ( + g cos 0 + KA m (K + KR )) + KA

(2 + Pc KA (K + KR ))0

T
K c

(-a + Ac KA Ka)

-1V 1

z

0

-e

0

1

o Iaw

ie

BX=W Wa

The basic modes of motion are given by det B = 0, ie

A -- +B 2 2+ B1 + Bo = 0

B 2 Mc KA KR + ( a V c

KA K RTc (0 +c L+cB1 = Ic KA (Ko + Ka) a + K Tc )-
m V \a+Tc

8

(4.7)

(4.8)

where:

(4.9)

(4.10 a)

(4. lOb)

(4.4)
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Bo m V ( T T c ) m + (gcos V)

(4. 1Oc)

In order to develop solutions for the SSV 049 vehicle motions, analytical ex-

pressions were derived to describe the vehicle parameter variations. The repre-
7

sentations are best in a least squares sense and are based on known data . Some

of the parameter variations are shown in Fig. 2-5. For the 049 vehicle a < 0 (c.g.

is behind the center of pressure) and the vehicle is aerodynamically stable (Ma < 0).

It is interesting to study the approximations used to represent the vehicle

system in earlier engineering analyses. In regions of negligible aerodynamic pres-

sure q, (4.5) is approximated by:

- = C (4.11)
6 ~2

When q is not negligible V is large and so (4.5) is approximated by:

- G 1PC 1 (4.12)

In these cases, one real clock function can be chosen to convert the system to a

time-invariant system. It is trivial in the case of (4.11), which is a double integ-

rator. With (4.12), substituting ~ = sk suggests the choice of

1 /2k = (-A )1/2 (4.13)

which converts (4.12) to

_a -,'C/I~',a2 + = G2 (4.14)
6 s2 + 1 2

While Laplace transforms and root locus methods cannot be applied to t-v systems

in a direct form, they are applicable in the form we have developed, ie (4.14). Root

variations are eliminated in (4.14). Control system design can be carried out by

conventional methods such as by root locus (Fig. 6). The clock is shown in Fig. 7.

The compensation network is designed in the s- space with a pole a and a zero b,

which are constants. Transformation back to real time results in a time-varying

compensation in which the pole, zero and the gain vary continuously. ie,

10
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SF = K (s +b )
F0 b CFi§

= H = (- / ) (4.15)0 a( /c) (s + a I-P)

where K is the value of the gain corresponding to the desired location of roots on
0

the s- plane. The results of this design for the 049 vehicle is given in Fig. 8, where

b = 0. 5, a = 1. 5, Ko = 1. The neutrally stable open loop system has been stabilized.

The response of the system can be expressed analytically at any time we wish.

We will now consider the third order equation (4.9) describing more general

motions in the pitch plane. The root configuration for the 049 vehicle for the spe-

cific trajectory chosen is shown in Fig. 9. Feedback control gains are chosen as

follows.

Minimum Drift Condition

We will now examine the response of the complete system to wind inputs.

In particular we will derive the condition for minimum lateral drift in a rigorous

manner through the multiple scales theory. In order to do so we will need the gen-

eralized final value theorem of Laplace transforms.

Lemma: Iff f (t) g (t) as t - oo then

F (s) G (s) as s - 0,

where F (s), G (s) are the Laplace transforms of f and g.

Using this lemma, we know from (4.4) and (4.8) and considering Laplace transforms

with respect to r1, that:

x (t) - x (r1 (t)) (a)

(4.16)

x (s) x (s) (b)

The limiting value is given by:

lim x (-1) = lim s x (s)

1 - o s - 0 (4.17)

using the above result and (4.7) we can express the steady state lateral drift as:

Zss Bo ('to)s*sSSV 0 ( 0) Ss

V = K K (4.18)
c A Kc -)

12
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where B° is given in (4.10) and the coefficients vary on the rTo scale. By similar

reasoning 0ss can be shown to be:

-(C K A K-.) _Z
0 SS MC KA (K a+K) , .( + ) (4. 19)
8ss =M KA (Ks+ ~K) -

Therefore:

Zss B° (o) /\Ss 0 0 5Ss
V [Zss )~I- (4.20)

V [ Mc KA (K0 + Ka ) - ae]\ V +W (4.20)

B ° (ro) is a function of the feedback gains. If they are chosen such that B o - 0 then

the lateral drift iss = 0 regardless of the wind input. This has now been shown to

be continuously true throughout the time variation. This is the drift minimum con-
7

dition7 , which can be written as:

KA K Tc + Pc L) = (mg cos + TT - D) (lc KA Ka - Mc) (4.21)
KA~~~ cD A~c ac + acL (rgcs

This is valid continuously through the time variation. Time-varying feedback gains

KA (ro), K 0 (,r 0 ), K a (r 0 ) can be chosen to satisfy (4.21) which then results in a drift

minimum condition. A number of choices are possible. For example, servo amp-

lifier gain KA and pitch attitude gain K being unity, K (r ) is given by (4.21) for
A0 a0

minimum drift. This is shown in Fig. 10. This, together with KR = 1 results in a

root configuration as in Fig. 11. It is seen that the system is now stable and re-

sponds more rapidly than the open loop system and has minimum drift. On the other

hand, we can choose Ke = 0 and determine KA (t) for minimum drift, with K 0 = KR = 1.

The gain variation and the closed loop roots are now shown in Fig. 10, 12. It is

seen that in both cases the lateral drift is minimum and the closed loop system has

desirable stability and response characteristics. The response of the closed loop

system is simply expressed as a damped oscillation with variable damping and fre-

quency and has the form exp ('1 (t))for each mode where r 1 (t) is a quadrature over

the characteristic roots (T o).

Conclusions

A method has been developed to synthesize the control of time-varying sys-

tems analytically. It is applicable to linear t-v systems with slowly varying coef-

ficients. We have developed output-input relationship in the form of a transfer

function for the t-v system, similar to time-invariant linear control theory. Further,

the response of the system has been separated into fast and slow parts, by performing

observations on different "clocks". For t-v systems the clocks are, of necessity,

nonlinear functions-ie they count time at varying rates. In general the clocks have

14
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to be not only nonlinear functions but even complex quantities in order to describe

oscillatory time-varying phenomena.

The advantages of the approach are evident. The "frozen" approximation to

a t-v system is established on a rigorous mathematical basis in the light of the

multiple scales theory. Such a representation can be obtained by considering purely

linear clocks. Indeed, the frozen representation, which is valid only for short times

around the instant of freezing, can now be replaced by a more accurate representa-

tion by our theory, which is valid throughout the time variation and not just at spe-

cific instants of time. Further, the case of constant coefficients arises as a natural

limit, being a special case of our general result. Stability of the t-v system can be

determined easily by our asymptotic theory. As we are dealing with analytical rep-

resentations which are simply calculable, we can employ them in different control

theoretic tasks such as control synthesis, parameter sensitivity studies, closed loop

control and stability analysis.

The method has been illustrated by applying it to the analysis of the shuttle

vehicle dynamics during boost phase and to the design of a coptrol system. Analytical
-. e -& ca. - . . ,

representations of some parameter variations are derived on a least squares basis

and the condition of gain variations for minimum drift are derived. Control system

is designed in the transformed space for the second order model representing the

vehicle at high dynamic pressure. For the full third order model, control gain vari-

ations are derived for two control configurations using the minimum drift condition

in the transformed ~ space. It is important to note that the drift minimum condition,

derived rigorously, is valid throughout the time variation. Solutions in real time t,

obtained after inverse Laplace transformation and restriction, are expressed as ex-

ponentials of quadratures over 9 (t). Control systems for t-v systems can now be

designed on this basis because of the analytical representation of the response of

general time-varying systems.

16



References

1. R. V. Ramnath, "A Multiple Time Scales Approach to the Analysis of

Linear Systems" PhD Dissertation, Princeton University (1967). Also

Rpt. No. AFFDL-TR-68-60, Wright-Patterson AFB, Dayton, Ohio (1968).

2. R. V. Ramnath, G. Sandri, "A Generalized Multiple Scales Approach to a

Class of Linear Differential Equations" J. Math. Anal. & Appl. Vol. 28

No. 2, Nov 1969.

3. N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory

of Nonlinear Oscillations" Gordon & Breach, NY.

4. G. Sandri, "The Foundations of Nonequilibrium Statistical Mechanics"

Ann. Phy (NY 24 (1963).

5. J. D. Cole, "Perturbation Methods in Applied Mathematics" Blaisdell.

6. A. L. Greensite, "Analysis and Design of Space Vehicle Flight Control

Systems" Spartan, NY 1970.

7. J. B. Price, F. E. Williams, "SRM-049 Configuration Data", Memo No.

5-2581-HOU-079, May 23, 1972, NASA/MSC, Houston, Texas.

17



DISTRIBUTION LIST

Internal:

R. Battin

H. Blair-Smith

T. Brand

P. Felleman

T. Fitzgibbon

J. Gilmore

F. Glick

M. Hamilton

D. Hoag

M. Johnston

A. Klumpp

B. Kriegsman

J. Laning

G. Levine

T. Edelbaum

A. Hopkins

H. Berberian

E. Womble

J. Deyst

P. Kachmar

W. T empleman

P. Philliou

J. Turnbull

A. Penchuk

R. Schlundt

R. Ramnath (20)

A. Engel

P. Sinha

F. Moss

J. Kernan

P. Mimno

E. Muller

J. Nevins

J. O'Connor

G. Ogletree

C. Pu

R. Ragan

W. Robertson

N. Sears

G. Silver (MIT/JSC)

G. Stubbs

R. Weatherbee

D. Fraser

S. Zeldin

D. Gustafson

P. Chin

P. Weissman

D. Keene

S. Croopnick

R. Bairnsfather

R. Goss

E. Jones

Apollo Library (2)

CSDL Library (10)



Delco

Kollsman

Raytheon

(3)

(2)

(2)

JSC:

National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas 77058
ATTN: Apollo Document Control Group (BM 86) (18 & 1R)

K. Cox (3)
c W. Peters (3)

C

KSC: (1 R)

National Aeronautics and Space Administration
J.F. Kennedy Space Center
J.F. Kennedy Space Center, Florida 32899
ATTN: Technical Document Control Office

External:


